Abstract

Technical lifetime prediction of polymeric materials is often based on accelerated ageing tests at elevated temperatures. Samples are exposed to relatively high temperatures to accelerate the natural degradation processes. For district heating pipes, accelerated thermal ageing is the ordinary method used to determine the lifetime of pipes. According to the Standard EN 253:2009 + A1:2013, the district heating pipes shall be subjected to an accelerated thermal ageing for a long period of time at 160 ˚C or 170 ˚C. The lifetime is determined by extrapolation using the Arrhenius relationship. However, papers published recently have questioned this method, especially the high temperatures used for ageing of the pipes and the use of Arrhenius equation to describe the complicated degradation mechanisms, which can result in the erroneous estimation of the technical lifetime.Our investigation has shown the complexity of the pipe’s degradation mechanisms. The behaviour of mechanical shear strength at elevated temperatures (T > 130 °C), suggests an alteration rather than an acceleration of the degradation mechanisms. Accelerated ageing tests should reproduce the proper natural ageing mechanisms. The analyses of PUR’s thermal conductivity and its chemical structure by FTIR confirmed the degradation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.