Abstract
Coalition formation is a central approach for multiagent coordination. A crucial part of coalition formation that is extensively studied in AI is coalition structure generation: partitioning agents into coalitions to maximize overall value. In this paper, we propose a novel method for coalition structure generation by introducing a compact and efficient representation of coalition structures. Our representation partitions the solution space into smaller, more manageable subspaces that gather structures containing coalitions of specific sizes. Our proposed method combines two new algorithms, one which leverages our compact representation and a branch-and-bound technique to generate optimal coalition structures, and another that utilizes a preprocessing phase to identify the most promising sets of coalitions to evaluate. Additionally, we show how parts of the solution space can be gathered into groups to avoid their redundant evaluation and we investigate the computational gain that is achieved by avoiding that redundant processing. Through this approach, our algorithm is able to prune the solution space more efficiently. Our results show that the proposed algorithm is superior to prior state-of-the-art methods in generating optimal coalition structures under several value distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.