Abstract
We study the optimality, efficiency, and robustness of crossover designs for comparing several test treatments to a control treatment. Since A-optimality is a natural criterion in this context, we establish lower bounds for the trace of the inverse of the information matrix for the test treatments versus control comparisons under various models. These bounds are then used to obtain lower bounds for efficiencies of a design under these models. Two algorithms, both guided by these efficiencies and results from optimal design theory, are proposed for obtaining efficient designs under the various models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.