Abstract

AbstractThe miniaturization of robots and actuators down to the micrometer length scale constitutes a fascinating technological challenge. Their development faces fabrication issues due to the small dimensions and their design must take into account how physics laws behave on those length scales. Last but not least, a major issue is energy delivery and management. In this scenario, light emerges as a versatile tool for the fabrication and, even more importantly, as an energy source. Optically driven micromachines—in which optical stimuli can be efficiently converted into mechanical work—have been realized in various contexts. This Review collects recent advances in this field, focusing on optical micro robots realized in soft polymers. Starting from an overview of the photoresponsive materials that have been employed, the various designs and realizations of such devices are shown exhibiting tasks and capabilities like swimming, walking, and the manipulation of microscopic objects. In the last part, frontiers studies in the integration of polymeric structures with biological organisms are shown. In many of the reported studies, untethered operation is a key issue, seen as a fundamental requirement toward the development of smart robots that can autonomously perform tasks and respond to their environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.