Abstract
This study developed an optically controllable transflective spatial filter in a dye-doped cholesteric liquid crystal (DDCLC) film. The mechanism to induce the spatial filter is attributable to the photoisomerization-induced controllability of the redshift of the reflection band in the DDCLC cell. At various pumped intensities, different spatial distributions of the diffraction pattern of the object can be selected to be filtered, such that high- and low-pass or notch- and band-pass transmitted and reflected images can be simultaneously obtained, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.