Abstract

Stable vortex lattices are basic dynamical patterns which have been demonstrated in physical systems including superconductor physics, Bose-Einstein condensates, hydrodynamics and optics. Vortex-antivortex (VAV) ensembles can be produced, self-organizing into the respective polar lattices. However, these structures are in general highly unstable due to the strong VAV attraction. Here, we demonstrate that multiple optical VAV clusters nested in the propagating coherent field can crystallize into patterns which preserve their lattice structures over distance up to several Rayleigh lengths. To explain this phenomenon, we present a model for effective interactions between the vortices and antivortices at different lattice sites. The observed VAV crystallization is a consequence of the globally balanced VAV couplings. As the crystallization does not require the presence of nonlinearities and appears in free space, it may find applications to high-capacity optical communications and multiparticle manipulations. Our findings suggest possibilities for constructing VAV complexes through the orbit-orbit couplings, which differs from the extensively studied spin-orbit couplings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.