Abstract

The blood ammonia (NH3) level is one of the most important hepatic biomarkers for the diagnosis and monitoring of liver pathologies and infections. In this work, we developed an optimized optical biosensing method to extract and quantify the ammonia contained in complex-matrix samples emulating the blood serum. First, the approach was tested with solutions of phosphate-buffered saline (PBS) and ammonia chloride. Then, further trials were carried out with solutions of fetal bovine serum (FBS). The ammonia was extracted from the tested samples through a customized cell, and it was optically quantified by exploiting the indophenol reaction. The extraction cell included a cation-exchange membrane in Nafion, which was chemically pre-treated through cleaning procedures of sulfuric acid and hydrogen peroxide to keep a basic pH in the ammonia solution and to avoid contaminants in the membrane. From the NH3 solution, the indophenol reaction produced light-reactive indophenol dye molecules, which were used as colorimetric indicators. Through absorbance measurements of the indophenol dye solution at 670 nm wavelength, we were able to detect and quantify the ammonia level in the samples both with a spectrophotometer and a customized miniaturized read-out system, obtaining a detection limit of 0.029 µmol/mL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.