Abstract
We discuss the change in the number of optical signal channels transmitted through wavelength division multiplexing links in a transparent optical network and report detailed measurement results of optical signal channel power variation in an experimental setup configured with realistic large-scale photonic cross-connect (PXC) switches fabricated using three-dimensional microelectromechanical system (3D MEMS) technology. The scale of the PXC-based network ranges from 100 to 300 km to simulate a realistic long-haul optical network using 100-km-long dispersion-shifted fibers and L-band erbium-doped fiber amplifiers with a high-speed automatic gain control circuit. The measurement results demonstrate the feasibility of stable operation of a transparent optical network by using these state-of-the-art technologies with proper parameter settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.