Abstract

Simultaneous effects of hydrogenic impurity, hydrostatic pressure, temperature and external electric and magnetic fields on the intersubband optical rectification coefficient of a two-dimensional parabolic quantum dot are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical rectification coefficient is obtained via the compact density matrix approach. The results indicate that the optical rectification coefficient is affected by the hydrogenic impurity, hydrostatic pressure, temperature and external fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.