Abstract
Exciton binding energies, oscillator strength, optical rectification coefficients and second harmonic generation are investigated using three different confinement potentials in a CdO/ZnO core/shell quantum dot. The bare potential, Smorodinsky–Winternitz potential and Woods–Saxon potential are employed in the Hamiltonian. The position dependent dielectric function is used. The electronic properties are found using variational formulism within a single band effective mass approximation whereas the optic properties are investigated using compact density matrix approach. The results show that different confinement potentials lead to significant changes in the coefficients of optical rectification and the second harmonic generations and the effects of confined potentials are more pronounced in the strong confinement region. The resonant peaks in the nonlinear optical rectification coefficients and second harmonic generation are blue shifted to larger photon energies with the various confined potentials and the results are enhanced using Smorodinsky–Winternitz potential. The obtained results can be applied for the potential applications for fabricating opto-electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.