Abstract

Electronic and optical properties of 3d-transition metal adsorbed graphene system, theoretically studied in the framework of density functional theory, reveals significant modification compared to the pristine system. Due to adsorption of transition metal, the emergence of closely separated electronic bands leads to substantial amount of low energy optical absorption below 2.0eV photon energy. Very significant enhancement of static dielectric constant and large value of reflectivity in the low optical energy regime has been identified for different adsorbed systems. In the different 3d-transition metal adsorbed systems, particularly up to the half filled d-shell transition metal atom, pronounced emergence of optical absorption line in the deep ultraviolet regime beyond 30.0eV photon energy is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.