Abstract

An inversion algorithm is used to derive extinction coefficient profiles and total optical depth values from lidar data collected during a study of the Kuwait oil fires smoke plume. Extinction coefficients derived from infrared (IR) wavelength lidar data and green wavelength lidar data are found to be in the range 0.06–1.30 km −1 and 0.06–1.60 km −1 respectively, for a plume cross section study flown on 28 May 1991. Corresponding total optical depth values are determined to be ∼0.05–1.00 for the IR wavelength and ∼0.05–1.20 for the green. The lidar-derived extinction coefficient and total optical depth results are found to be in agreement with previously published data on the optical properties of the smoke plume. Finally, total optical depth results derived from both lidar and optical particle counter (OPC) data are compared for a plume study flown on 29 May 1991, and agreement is found to be within expected uncertainty limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.