Abstract
The primary objective of this experimental research is to introduce the capacity of laser irradiation into the synthesis of bimetallic nanoparticles from noble metals. Gold and silver nanoparticles are produced through the laser ablating gold and silver targets in distilled water. Originally, the samples are synthesized by using Nd:YAG laser with 1064 nm wavelength and 7 ns pulse width. Following this, solutions mixed with different volumetric ratios, are irradiated by the second harmonic of the said laser at 532 nm wavelength. The absorption peak of gold nanoparticles around 530 nm, is used to transfer the laser energy to nanoparticles and synthesize Au/Ag bimetallic nanoparticles. The wavelength and volumetric ratio of solutions are the experiment's variables. The bimetallic nanoparticles are characterized as follows: X-ray diffraction pattern, spectroscopy in the range of UV–Vis-NIR and IR, Photoluminescence spectrum, Dynamic light scattering, and Fourier transform infrared spectroscopy. Additionally, FE-SEM and TEM images are used to study the size and morphology of nanoparticles. One of the aims of the research is to investigate the effects of laser wavelength and different volumetric concentrations on the optical properties of Au/Ag bimetallic nanoparticles. On the other hand, the study revealed that silver concentration and laser wavelength in the synthesis of Au/Ag bimetallic nanoparticles with different structures, cause the formation of crystalline structure, growth of grain size, and therefore silver oxide reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.