Abstract
The optical properties of dielectric plates coated with gapped graphene are investigated on the basis of first principles of quantum electrodynamics. The reflection coefficients and reflectivities of graphene-coated plates are expressed in terms of the polarization tensor of gapped graphene and the dielectric permittivity of plate material. Simple approximate expressions for the required combinations of components of the polarization tensor applicable in the wide frequency region, where the presence of a gap influences the optical properties, are found. Numerical computations of the reflectivities of graphene-coated SiO${}_2$ plates are performed for different values of the mass-gap parameter at different temperatures. It is shown that with an increasing gap width the reflectivity of a graphene-coated plate at the normal incidence decreases by up to a factor of 8 depending on the values of frequency and mass-gap parameter. The angle dependences of reflectivities for both polarizations of the incident electromagnetic waves have been computed for Si and SiO${}_2$ plates coated with gapped graphene. We demonstrate that the TM reflectivity has a minimum value at some angle of incidence depending on the mass-gap parameter, frequency and temperature, whereas the TE reflectivity depends on the angle of incidence monotonously. However, for the graphene coatings with a nonzero mass-gap parameter the reflected light cannot be fully polarized. Possible applications of the obtained results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.