Abstract
In this paper we describe a Monte Carlo simulation for time resolved fluorescence. In the past information on steady state measurements have been reported. However we feel that a lot more information and insight could be gained by the use of time resolved fluorescence spectroscopy. We have developed a Monte Carlo simulation to study the fluorescence signal generated by fluorophores distributed in a scattering medium. The simulation uses a semi-infinite medium with a thickness of 1cm. We have used the simulation to study the effect of the change in optical properties of the medium on the TPSF (temporal point spread function) generated. We have also investigated the effect of the increased radial separation of the detector on the TPSF. We have observed a shift in the Tmax (time at which the peak intensity is reached) in accordance with diffusion theory. We wanted to validate our simulation by seeing how well we could derive the optical properties of the medium from the TPSF produced from simulation. We fitted the TPSF to an adjusted form of the diffusion theory to find scattering coefficient, μ<sub>s</sub>, and we have used an analytical model of time resolved fluorescence to extract the absorption coefficient, μ<sub>a</sub>. The results obtained were better than previously reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.