Abstract
We consider a bilayer system of two-dimensional Bose-Einstein-condensed dipolar dark excitons (upper layer) and bright ones (bottom layer). We demonstrate that the interlayer interaction leads to a mixing between excitations from different layers. This mixing leads to the appearance of a second spectral branch in the spectrum of bright condensate. The excitation spectrum of the condensate of dark dipolar excitons then becomes optically accessible during luminescence spectra measurements of the bright condensate, which allows one to probe its kinetic properties. This approach is relevant for experimental setups, where detection via conventional techniques remains challenging; in particular, the suggested method is useful for studying dark dipolar excitons in transition metal dichalcogenide monolayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.