Abstract

Nonreciprocal light phenomena, including one-way wave propagation along an interface and one-way optical tunneling, are presented at terahertz frequencies in a system of magnetically controlled multi-layered structure. By varying the surface termination and the surrounding medium, it is found that the nonreciprocal bound or radiative Tamm plasmon polartions can be supported, manipulated, and well excited. Two different types of contributions to the non-reciprocity are analyzed, including the direct effect of magnetization-dependent surface terminating layer as well as violation of the periodicity in truncated multi-layered systems. Calculations on the asymmetrical dispersion relation of surface modes, field distribution, and transmission spectra through the structure are employed to confirm the theoretical results, which may potentially impact the design of tunable and compact optical isolators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.