Abstract

Microsphere lens for nano-imaging has been widely studied because of its superior resolving power, real-time imaging characteristic, and wide applicability on diverse samples. However, the further development of the microsphere microscope has been restricted by its limited magnification and small field-of-view. In this paper, the microsphere compound lenses (MCL) which allow enlarged magnification and field-of-view simultaneously in non-contact imaging mode have been demonstrated. A theoretical model involving wave-optics effects is established to guide the design of MCL for different magnifications and imaging configurations, which is more precise compared with common geometric optics theory. Experimentally, using MCL to image the specimen with a tunable magnification from 2.8× to 10.3× is realized. Due to the enlarged magnification, a high-resolution target with 137 nm line width can be resolved by a 10× objective. Besides, the field-of-view of MCL is larger than that of a single microsphere and can be further increased through scanning working manner, which has been demonstrated by imaging a sample with ∼76 nm minimum feature size in a large area. Prospectively, the well-designed MCL will become irreplaceable components to improve the imaging performances of microsphere microscope just like the compound lens in the conventional macroscopic imaging system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.