Abstract

AbstractCarbon nanotubes represent an attractive material option for many applications, including electromechanical actuators. Though single wall carbon nanotubes exhibit advantageous actuator properties, such as large force generation and low operating voltage, functional devices based on carbon nanotube actuation have not yet been reported. Here we describe the fabrication and performance evaluation of a 1×2 electromechanical optical fiber switch based on a carbon nanotube actuator. The side-to-side movement of the input fiber of the device between two output fibers is a result of the actuation of an assembly of carbon nanotubes that have been attached to the fiber. The intensities of optical signals exiting the two outputs are monitored, and switching times down to 30 ms are demonstrated. Initial results indicate that mechanical optical switches using carbon nanotube actuators may be preferable to switches using alternative technologies due to the inexpensive assembly, low operating power, potentially high switching speeds, and potentially low insertion loss of the carbon nanotube based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.