Abstract
Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [$\sigma(\omega)$] spectra originating from the strong conduction ($c$)--$f$ electron hybridization. To clarify the behavior of the mid-IR peak at a low $c$-$f$ hybridization strength, we compared the $\sigma(\omega)$ spectra of the isostructural antiferromagnetic and heavy-fermion Ce compounds with the calculated unoccupied density of states and the spectra obtained from the impurity Anderson model. With decreasing $c$-$f$ hybridization intensity, the mid-IR peak shifts to the low-energy side owing to the renormalization of the unoccupied $4f$ state, but suddenly shifts to the high-energy side owing to the $f$-$f$ on-site Coulomb interaction at a slight localized side from the quantum critical point (QCP). This finding gives us information on the change in the electronic structure across QCP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.