Abstract

Traditional artificial vision systems built using separate sensing, computing, and storage units have problems with high power consumption and latency caused by frequent data transmission between functional units. An effective approach is to transfer some memory and computing tasks to the sensor, enabling the simultaneous perception-storage-processing of light signals. Here, an optical-electrical coordinately modulated memristor is proposed, which controls the conductivity by means of polarization of the 2D ferroelectric Ruddlesden-Popper perovskite film at room temperature. The residual polarization shows no significant decay after 109-cycle polarization reversals, indicating that the device has high durability. By adjusting the pulse parameters, the device can simulate the bio-synaptic long/short-term plasticity, which enables the control of conductivity with a high linearity of ≈0.997. Based on the device, a two-layer feedforward neural network is built to recognize handwritten digits, and the recognition accuracy is as high as 97.150%. Meanwhile, building optical-electrical reserve pool system can improve 14.550% for face recognition accuracy, further demonstrating its potential for the field of neural morphological visual systems, with high density and low energy loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.