Abstract

To understand neuronal information processing, it is essential to investigate the input–output relationship and its modulation via detailed dissections of synaptic transmission between pre- and postsynaptic neurons. In Caenorhabditis elegans, pre-exposure to an odorant for five minutes reduces chemotaxis (early adaptation). AWC sensory neurons and AIY interneurons are crucial for this adaptation; AWC neurons sense volatile odors, and AIY interneurons receive glutamatergic inputs from AWC neurons. However, modulations via early adaptation of the input–output relationship between AWC and AIY are not well characterized. Here we use a variety of fluorescent imaging techniques to show that reduced synaptic-vesicle release without Ca2+ modulation in AWC neurons suppresses the Ca2+ response in AIY neurons via early adaptation. First, early adaptation modulates the Ca2+ response in AIY but not AWC neurons. Adaptation in the Ca2+ signal measured in AIY neurons is caused by adaptation in glutamate release from AWC neurons. Further, we found that a G protein γ-subunit, GPC-1, is related to modulation of glutamate input to AIY. Our results dissect the modulation of the pre- and postsynaptic relationship in vivo based on optical methods, and demonstrate the importance of neurotransmitter-release modulation in presynaptic neurons without Ca2+ modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.