Abstract

Marginally stable power recycling cavities are being used by nearly all interferometric gravitational wave detectors.With stability factors very close to unity the frequency separation of the higher order optical modes is smaller than the cavity bandwidth. As a consequence these higher order modes will resonate inside the cavity distorting the spatial mode of the interferometer control sidebands. Without losing generality we study and compare two designs of stable power recycling cavities for the proposed 5 kilometer long Australian International Gravitational Observatory (AIGO), a high power advanced interferometric gravitational wave detector. The length of various optical cavities that form the interferometer and the modulation frequencies that generate the control sidebands are also selected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.