Abstract

Eg5 is a kinesin motor protein that is responsible for bipolar spindle formation and plays a crucial role during mitosis. Loss of Eg5 function leads to the formation of monopolar spindles, followed by mitotic arrest, and subsequent cell death. Several cell-permeable small molecules have been reported to inhibit Eg5 and some have been evaluated as anticancer agents. We now describe the design, synthesis, and biological evaluation of photoswitchable variants with five different pharmacophores. Our lead compound Azo-EMD is a cell permeable azobenzene that inhibits Eg5 more potently in its light-induced cis form. This activity decreased the velocity of Eg5 in single-molecule assays, promoted formation of monopolar spindles, and led to mitotic arrest in a light dependent way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.