Abstract

Frequency dependent conductivity σ(ω) is calculated for the t − J model by applying the memory function technique in terms of the Hubbard operators. The relaxation rate due to electron scattering on spin and charge dynamical fluctuations is calculated and a generalized Drude law for σ(ω) is obtained. For a model with an incoherent spectrum for one-hole excitations we obtain a universal form for frequency dependence of relaxation rate and conductivity in terms of the scaling function γ(ω/kT). The relaxation rate for the t − J model is quite different from that one for the conventional Hubbard model in the strong coupling limit where it vanishes due to an exact cancellation of the intraband scattering and virtual interband transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.