Abstract

PurposeThe purpose of this study was to evaluate specifically in type 1 diabetes mellitus (DM) individuals the relationship between perifoveal superficial capillary plexus (SCP) parameters assessed by optical coherence tomography angiography (OCTA) and diabetic retinopathy (DR) grade.MethodsCross-sectional analysis of a large scale prospective OCTA trial cohort (ClinicalTrials.gov NCT03422965). A total of 1186 eyes (593 individuals), 956 type 1 DM eyes (478 patients), and 230 control eyes (115 healthy volunteers) were included in this study. DR stage was graded according to the International Classification. OCTA imaging was performed with a commercially available device (Cirrus HD-OCT). Vessel density (VD), perfusion density (PD), and foveal avascular zone (FAZ) area, perimeter and circularity measurements were quantified in the SCP and receiver operating characteristic (ROC) curves were constructed for each OCTA parameter.ResultsVD and PD (in both 3 × 3 and 6 × 6 mm captures) were inversely associated with DR stage (P < 0.001 in all cases) in a multiple regression analysis after controlling by age, gender, signal strength index, axial length, and DM duration. Greater FAZ area and perimeter and conversely lower circularity measurements were observed as DR severity increased in both scanning protocols (P < 0.05 in all cases).ConclusionsIn type 1 DM individuals, OCTA provides an objective, continuous, and reliable method for accurate quantification of VD, PD, and FAZ parameters in the SCP, which ultimately correlate with DR stages.Translational RelevanceObjective OCTA measurements of the retinal microvasculature could substitute the clinical DR classification in patients with type 1 DM, identify patients at risk of DR progression, and inform treatment decisions to modify the evolution of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.