Abstract

We study the optical bistability (OB) in photonic multilayers doped by graphene sheets, stacking two Bragg reflectors with a defect layer between the reflectors. OB stems from the nonlinear effect of graphene, so the local field of defect mode (DM) could enhance the nonlinearity and reduce the thresholds of bistability. The structure achieves the tunability of bistability due to that the DM frequency and transmittance could be modulated by the chemical potential. Bistability thresholds and interval of the two stable states could be remarkably reduced by decreasing the chemical potential. A lager Bragg periodic number could increase the localizing of field, but the graphene loss may decrease the intensity of transmission light. We have concluded an appropriate periodic number to achieve OB. The study suggests that the tunable bistability of the structure could be used for all-optical switches in optical communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.