Abstract
The optical axis sensitivity for the unit-magnification multipass system (UMS) is presented by using a general misaligned optical element transfer model. The generalized sensitivity factors SD1, SD2, ST1, and ST2 influenced by both the axial and angular misalignments of the objective mirrors in a UMS have been calculated for the first time. The Bernstein-Herzberg White Cells are used as an example, and their alignment tolerance and stability properties are found when their configurations change. The analysis in this paper is helpful for the design of other kinds of multipass gas cells (MGC) with high robustness and avoiding the violent vibration of the optical axis when the misalignment of each mirror is controlled within the tolerance range. Among the five possible perturbations sources, the misaligned factors δix,δiy,θix have more effects on the output beam’s position and the perturbed sources from δix,θix and δiy,θiy have more impacts on the output beam’s slope referred to as x-axis and y-axis, respectively. Higher reflection times mean smaller tolerance range. The results benefit the multipass cell design and the precise alignment of the mirrors within the cell with the purpose of long-term stability in measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.