Abstract

AbstractThe objective of this study was to investigate the fundamental aspects of acrylic resin and zirconia nanoparticle interaction to analyze the optical properties and subsequent changes in refractive index with incremental loading of nanoparticles. Poly(methyl methacrylate) (PMMA) reinforced with zirconia nanoparticles were prepared by dip coating, spin coating and solvent casting techniques. An overall understanding of the polymer nanocomposite film has been achieved using the spectroscopic and morphological studies. The vital aspect of this whole study is to derive a simple yet an efficient nanocomposite film capable of imparting extraordinary optical properties. Within the limitations of this research a very crucial property of the material has been revealed. The RI as well as the optical transparency of the nanocomposite film has been steadily maintained with a significant increase of RI by the magnitude of 0.06 and ~100% light transmittance on incorporation of pure zirconia nanoparticles into PMMA matrix has been achieved. The best technique found was spin coating as it could yield thin films and better transparency and higher refractive index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.