Abstract

The optical and nanomechanical properties of Ga2Se3 single crystals and thin films were investigated using reflection, transmission, and nanoindentation measurements. The reflection spectrum recorded in the 525- to 1100-nm range was analyzed to get the band gap energy of the crystal structure, and derivative analysis of the spectrum resulted in band gap energy of 1.92 eV which was attributed to indirect transition. The band gap energy of thermally evaporated Ga2Se3 thin film was determined from the analysis of the transmittance spectrum. The absorption coefficient analysis presented the direct band gap energy as 2.60 eV. The refractive index was investigated in the transparent region using the Wemple–DiDomenico single-oscillator model. Nanoindentation measurements were carried out on the crystal and thin film structures of Ga2Se3. Nanohardness and elastic modulus of the Ga2Se3 single crystals and thin films were calculated following the Oliver–Pharr analysis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.