Abstract

(Ga,Mn)/N/InGaN multiquantum well (MQW) diodes were grown by molecular beam epitaxy (MBE). The current-voltage characteristics of the diodes show the presence of a parasitic junction between the (Ga,Mn)N and the n-GaN in the top contact layer due to the low conductivity of the former layer. Both the (Ga,Mn)N/InGaN diodes and control samples without Mn doping show no or very low (up to 10% at the lowest temperatures) optical (spin) polarization at zero field or 5 T, respectively. The observed polarization is shown to correspond to the intrinsic optical polarization of the InGaN MQW, due to population distribution between spin sublevels at low temperature, as separately studied by resonant optical excitation with a photon energy lower than the bandgap of both the GaN and (Ga,Mn)N. This indicates efficient losses in the studied structures of any spin polarization generated by optical spin orientation or electrical spin injection. The observed vanishing spin injection efficiency of the spin light-emitting diode (LED) is tentatively attributed to spin losses during the energy relaxation process to the ground state of the excitons giving rise to the light emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.