Abstract
Multiple-input–multiple-output (MIMO) techniques have recently demonstrated significant potentials in visible light communications (VLC), as they can overcome the modulation bandwidth limitation and provide substantial improvement in terms of spectral efficiency and link reliability. However, MIMO systems typically suffer from inter-channel interference, which causes severe degradation to the system performance. In this paper, we propose a novel optical adaptive precoding (OAP) scheme for the downlink of MIMO VLC systems, which exploits the knowledge of transmitted symbols to enhance the effective signal-to-interference-plus-noise ratio. Furthermore, we derive bit-error-rate expressions for the proposed OAP scheme under perfect and outdated channel state information (CSI). Our results demonstrate that the proposed scheme is more robust to both CSI error and channel correlation, compared to conventional channel inversion precoding. These results are expected to provide useful insights in the effective design and efficient operation of VLC networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.