Abstract

A systematic optical activation study of Eu-implanted nanoporous GaN films has been carried out as a function of ion dose and annealing temperature. The nanoporous GaN films are prepared by photoelectrochemical etching of n-type GaN films in HF-based electrolyte. Eu ions are implanted in both n-type GaN and n-type porous GaN films at 200keV with doses ranging from 5×1014to5×1015cm−2. For the implantation damage recovery and optical activation of Eu3+ ions, rapid thermal annealing is performed in the temperature range of 900–1200°C under nitrogen ambient. The surface morphology of implanted porous GaN after different processing steps is characterized by scanning electron microscopy and the results show that porous morphology remains uniform even after ion implantation and high temperature processing. Microphotoluminescence and micro-Raman techniques have been used to investigate the optical properties of these Eu-implanted nanoporous films. Postimplantation annealing of both as-grown GaN and porous GaN films leads to the observation of strong photoluminescence (PL) peak around 622nm, which is associated with the D05–F27 intraionic transition of Eu3+ ions. We have observed that PL intensity of Eu-related luminescence peaks increases with annealing temperature up to 1100°C. In addition, due to efficient light extraction by surface nanostructuring, Eu-implanted porous GaN films show much stronger luminescence when compared to Eu-implanted as-grown GaN. Raman spectral analyses also indicate the optimum annealing condition for the implantation damage recovery and the compressive stress state in the Eu-implanted films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.