Abstract

In this article I review the last 10 years of progress in the imaging of the optic nerve with a particular focus on applications to multiple sclerosis (MS). Development of magnetic resonance imaging (MRI) of the optic nerve has lagged behind imaging of other parts of the CNS. These limitations are due to technical challenges related to the small size and mobility of the optic nerves and artefacts caused by surrounding cerebrospinal fluid, orbital fat, and air-bone interfaces. Nonetheless the last 10 years has seen significant progress with regard to detecting optic nerve atrophy following optic neuritis, the use of fat- and CSF-suppressed high resolution imaging, the ability to measure magnetization transfer ratio and diffusivity in the optic nerve, and the emergence of SPIR-FLAIR for increasing sensitivity to inflammatory demyelination. Remaining challenges include further reduction of movement artifacts, testing ultra-high field MRI systems and dedicated surface coils, and developing automated segmentation techniques to improve the reproducibility of quantitative measurements. Finally the role of optic coherence tomography as a marker of retinal damage needs to be clarified further through correlations with MRI, clinical, and electrophysiologic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.