Abstract

This article investigates the problem of distributed channel selection in opportunistic spectrum access (OSA) networks with partially overlapping channels (POC) using a game-theoretic learning algorithm. Compared with traditional non-overlapping channels (NOC), POC can increase the full-range spectrum utilization, mitigate interference and improve the network throughput. However, most existing POC approaches are centralized, which are not suitable for distributed OSA networks. We formulate the POC selection problem as an interference mitigation game. We prove that the game has at least one pure strategy NE point and the best pure strategy NE point minimizes the aggregate interference in the network. We characterize the achievable performance of the game by presenting an upper bound for aggregate interference of all NE points. In addition, we propose a simultaneous uncoupled learning algorithm with heterogeneous exploration rates to achieve the pure strategy NE points of the game. Simulation results show that the heterogeneous exploration rates lead to faster convergence speed and the throughput improvement gain of the proposed POC approach over traditional NOC approach is significant. Also, the proposed uncoupled learning algorithm achieves satisfactory performance when compared with existing coupled and uncoupled algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.