Abstract

In this paper the operator-valued martingale transform inequalities in rearrangement invariant function spaces are proved. Some well-known results are generalized and unified. Applications are given to classical operators such as the maximal operator and the p-variation operator of vector-valued martingales, then we can very easily obtain some new vector-valued martingale inequalities in rearrangement invariant function spaces. These inequalities are closely related to both the geometrical properties of the underlying Banach spaces and the Boyd indices of the rearrangement invariant function spaces. Finally we give an equivalent characterization of UMD Banach lattices, and also prove the Fefferman-Stein theorem in the rearrangement invariant function spaces setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.