Abstract
AbstractAn operator-splitting finite element scheme for the time-dependent radiative transfer equation is presented in this paper. The streamline upwind Petrov-Galerkin finite element method and discontinuous Galerkin finite element method are used for the spatial-angular discretization of the radiative transfer equation, whereas the backward Euler scheme is used for temporal discretization. Error analysis of the proposed numerical scheme for the fully discrete radiative transfer equation is presented. The stability and convergence estimates for the fully discrete problem are derived. Moreover, an operator-splitting algorithm for the numerical simulation of high-dimensional equations is also presented. The validity of the derived estimates and implementation is illustrated with suitable numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.