Abstract
LetXbe a completely regular Hausdorff space, and let(E,‖·‖E)and(F,‖·‖F)be Banach spaces. LetCb(X,E)be the space of allE-valued bounded, continuous functions defined onX, equipped with the strict topologiesβz, where z=σ,∞,p,τ,t. General integral representation theorems of(βz,‖·‖F)-continuous linear operators T:Cb(X,E)→F with respect to the corresponding operator-valued measures are established. Strongly bounded and(βz,‖·‖F)-continuous operatorsT:Cb(X,E)→Fare studied. We extend to “the completely regular setting” some classical results concerning operators on the spacesC(X,E)andCo(X,E), whereX is a compact or a locally compact space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.