Abstract

Recent progress in spatial resolution enhancement of sea ice concentrations obtained by microwave remote sensing has been stimulated by two new developments: First, the new sensors AMSR (Advanced Microwave Scanning Radiometer) on MIDORI-II and AMSR-E on AQUA offer horizontal resolutions of 6x4 km at 89 GHz. This is nearly three times the resolution of the standard sensor SSM/I at 85 GHz (15x13 km). The sampling distance at the high frequencies is 12.5 km at SSM/I and 5 km at the AMSR-E instrument. Second, a new algorithm enables the estimation of sea ice concentrations from the channels near 90 GHz, despite the enhanced atmospheric influence in these channels. This allows to fully exploit their horizontal resolution which is two to three times finer than the one of the channels near 19 and 37 GHz. These frequencies are used by the most widespread algorithms for sea ice retrieval, the NASA Team and Bootstrap algorithms. These two developments are combined to determine operationally sea ice concentration maps. The used ASI (Artist Sea Ice) algorithm combines a model for retrieving the sea ice concentration from SSM/I 85 GHz data proposed by Svendsen et al. (1) with an ocean mask derived from the 18-, 23-, and 37-GHz AMSR-E data using two weather filters and the Bootstrap Algorithm. The AMSR-E sea ice concentration data are projected into grids of sampling sizes down to 3 km. Hemispherical and regional maps are provided daily at www. iup.physik.uni-bremen.de.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.