Abstract
The power handling capability of the JET Lower Hybrid Current Drive (LHCD) system is examined using the long-term database. The limitations, in particular in H-mode plasmas, are discussed and the performance compared with other LHCD experiments using multijunctions as power dividers. Although the power density of 25 MW m−2 has been exceeded in L-mode and almost obtained in ELMy H-mode (on 1/6th of the antenna), it is concluded that the RF conditioning performed on JET does not allow us to exceed an electric field of ∼5.5 kV cm−1 which is generally not sufficient under the rather weak coupling conditions of the JET H-mode. Modelling of an arc occurring in a waveguide indicates that rather small variations of the reflected wave (amplitude and phase) may occur, rendering arc detection based on RF measurements difficult in some cases. The JET bolometry diagnostic with four chords viewing the antenna front is found to be an efficient tool to detect an arc. In L-mode plasmas, a very good correlation between the amplitude of the bolometry signals and the iron spectroscopic lines is found. In H-mode the arc detection is clearly more difficult with enhanced radiation during the ELM but is still possible when the bolometry signals are properly processed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.