Abstract

This paper concerns the tuning of the operating temperatures, selectivity, and repeatability of a resistive acetone sensor based on TiO 2 nanotubes (NTs) through surface modifications (of NTs) using Pd and Ni nanoparticles. Three sets of sensor devices, which employ unmodified, Ni-modified, and Pd-modified TiO 2 NT arrays as the sensing layer, were tested for acetone detection in the temperature range of 50 °C–250 °C, targeting 10–1000 ppm. It was found that both the modified (Pd and Ni) sensors offered a lower optimum operating temperature (100 °C) compared with its unmodified counterpart (150 °C), possibly owing to the requirement of lower activation energy in the case of modified systems. The cross sensitivity toward other interfering species, viz., ethanol, methanol, 2-butanone, and toluene, was investigated. Both the modified sensors were found to offer better selectivity toward acetone than the unmodified sensor. However, the response and selectivity improvement of the modified sensors was achieved at the expense of poor repeatability. Possibly owing to the increased structural defects and the nonidentical oxygen spill over in the repeated cycles, the modified sensors offered relatively poor repeatability. Among the two types of modifications, the Pd-modified sensor offered better response magnitude and transient characteristics (the response time and the recovery time) than the Ni-modified sensor. The underlying mechanism for such improvement has been also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.