Abstract

A comprehensive parametric study for a Fischer-Tropsch (FT) synthesis process has been conducted to investigate the relation between process parameters and reactor characteristics such as conversion, selectivity, multiplicity, and stability. A flexible model was employed for this purpose, featuring the dependence of Anderson-Shultz-Flory (ASF) factor on composition and temperature. All variable process parameters in industrial FT reactors were subject to variation, including reaction temperature, reactor pressure, feed ratio, inlet mass flux, feed temperature, heat transfer coefficient, catalyst concentration, catalyst activity, etc. While typical trade-off was encountered in most cases, i.e., the change of a parameter in one direction enhances one aspect but deteriorating another, the change of feed conditions gave some promising results. It has been found that decreasing the feed rate (or increasing the residence time) and/or lowering the feed concentration can successfully enhance the conversion up to more than 90% for our specific case, without hurting the product selectivity as well as effectively condense the region of multiple steady states. The benefits and limitations accompanied with the variation of the parameters were discussed in detail and a rational start-up strategy was proposed based on the preceding results. It is shown that the decrease of inlet mass flux (say, 85% decrease of the feed rate or 60% decrease of the feed concentration from the nominal condition chosen here) or the decrease of H2/CO ratio (specifically, below about 0.25), or their combination can eliminate multiple steady states. The resulting unique relation between temperature and manipulated variable (i.e., coolant flow rate) appears to assure a safe arrival at the target condition at the start-up stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.