Abstract

We explored the size-dependent activity and selectivity of Zn nanoparticles (NPs) for the electrochemical CO2 reduction reaction (CO2RR). Zn NPs ranging from 3 to 5 nm showed high activity and selectivity (∼70%) for CO production, whereas those above 5 nm exhibited bulk-like catalytic properties. In addition, a drastic increase in hydrogen production was observed for the Zn NPs below 3 nm, which is associated with the enhanced content of low-coordinated sites on small NPs. The presence of residual cationic Zn species in the catalysts was also revealed during CO2RR via operando X-ray absorption fine-structure spectroscopy measurements. Such species are expected to play a role in the selectivity trends obtained. Our findings can serve as guidance for the development of highly active and CO-selective Zn-based catalysts for CO2RR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.