Abstract

The viscocapillary model for predicting the operability windows in a dual-slot coating process for two Newtonian liquids has been derived by means of a lubrication approximation technique from two-dimensional (2-D) Navier-Stokes equations. The flow rates per width and the pressure differences simplified in several sub-regions within the coating bead regime have been integrated together with approximations of the upstream and downstream menisci and the interlayer between the top and bottom layers. Coating limits or onsets for leaking and bead break-up defects have been determined on the basis of the position of upstream meniscus of the bottom layer as an indicator. Operability coating windows predicted from the viscocapillary model show a good agreement with those by 2-D CFD solver and experiments. In addition, the pressure profiles within the coating bead regime compared between the viscocapillary and 2-D models are qualitatively similar. This simplified model can be applied as a fast tool for usefully manipulating the stable operations in dual-layer slot coating systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.