Abstract

Researchers led by Soroush Shabahang and Ayman F. Abouraddy at the University of Central Florida are making nanoparticles with their bare hands––and some crafty materials science. To create uniform micro- and nanoscale structures, the team is simply stretching fibers and sheets made from a ductile polymer composite containing either a brittle core or coating (Nature 2016, DOI: 10.1038/nature17980). The team’s process is compatible with a variety of ductile materials, such as polycarbonate and polyethersulfone, that can be stretched at room temperature without breaking. The method also works with a variety of brittle materials, including glass, gold, and even ice. Stretching a fiber or sheet of one of the composites with a pair of pliers forces the polymer’s molecules into alignment, which causes the fiber or sheet to contract. But this contraction begins in a small region and then spreads outward like a wave, traveling through the polymer layer. This wave

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.