Abstract

Condition monitoring and fault diagnosis are currently considered crucial means to increase the reliability and availability of wind turbines and, consequently, to reduce the wind energy cost. With similar goals, direct-drive wind turbines based on permanent magnet synchronous generators (PMSGs) with full-scale power converters are an emerging and promising technology. Numerous studies show that power converters are a significant contributor to the overall failure rate of modern wind turbines. In this context, open-circuit fault diagnosis in the two power converters of a PMSG drive for wind turbine applications is addressed in this paper. A diagnostic method is proposed for each power converter, allowing real-time detection and localization of multiple open-circuit faults. The proposed methods are suitable for integration into the drive controller and triggering remedial actions. In order to prove the reliability and effectiveness of the proposed fault diagnostic methods, several simulation and experimental results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.