Abstract
We propose and implement a novel computational method for simulating open-system electronic dynamics and obtaining thermalized electronic structures within an open quantum system framework. The system-bath interaction equation of motion is derived and modeled from the local harmonic oscillator description for electronic density change. The nonequilibrium electronic dynamics in a thermal bath is simulated using first-order kinetics. The resultant electronic densities are temperature-dependent and can take characteristics of the ground and excited states. We present results of calculations performed on H(2) and 1,3-butadiene performed at the Hartree-Fock level of theory using a minimal Slater-type orbital basis set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.