Abstract

BackgroundSetting and strategies of mechanical ventilation with positive end-expiratory pressure (PEEP) in acute lung injury (ALI) remains controversial. This study compares the effects between lung-protective mechanical ventilation according to the Acute Respiratory Distress Syndrome Network recommendations (ARDSnet) and the open lung approach (OLA) on pulmonary function and inflammatory response.MethodsEighteen juvenile pigs were anaesthetized, mechanically ventilated, and instrumented. ALI was induced by surfactant washout. Animals were randomly assigned to mechanical ventilation according to the ARDSnet protocol or the OLA (n=9 per group). Gas exchange, haemodynamics, pulmonary blood flow (PBF) distribution, and respiratory mechanics were measured at intervals and the lungs were removed after 6 h of mechanical ventilation for further analysis.ResultsPEEP and mean airway pressure were higher in the OLA than in the ARDSnet group [15 cmH2O, range 14–18 cmH2O, compared with 12 cmH2O; 20.5 (sd 2.3) compared with 18 (1.4) cmH2O by the end of the experiment, respectively], and OLA was associated with improved oxygenation compared with the ARDSnet group after 6 h. OLA showed more alveolar overdistension, especially in gravitationally non-dependent regions, while the ARDSnet group was associated with more intra-alveolar haemorrhage. Inflammatory mediators and markers of lung parenchymal stress did not differ significantly between groups. The PBF shifted from ventral to dorsal during OLA compared with ARDSnet protocol [−0.02 (−0.09 to −0.01) compared with −0.08 (−0.12 to −0.06), dorsal–ventral gradients after 6 h, respectively].ConclusionsAccording to the OLA, mechanical ventilation improved oxygenation and redistributed pulmonary perfusion when compared with the ARDSnet protocol, without differences in lung inflammatory response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.