Abstract

Long Valley Exploratory Well, drilled into the Resurgent Dome at Long Valley Caldera (California) to explore the potential of geothermal power in an active magmatic system, achieved temperatures of only ca. 100°C at 2500–3000 m depth, well below the range expected atop an active magma chamber. Open fissures encountered at 2600 m depth are coated by mm-sized idiomorphic quartz crystals with first- and second-order growth discontinuities. Specific growth defects indicating rapid crystallization reflect sudden changes in SiO 2 supersaturation. Fluid inclusions contain low salinity (0–5 wt% NaCl) and low CO 2 (<3 mole%) aqueous fluids, with V–L homogenization temperatures of 300–350°C, indicating trapping at more than 200°C above the ambient temperatures measured within the borehole today. Fluid composition and inclusion density varies between and within the growth zones, reflecting progressive changes in the hydrothermal system during crystallization. Episodic crystallization from supersaturated fluids is interpreted to reflect sudden changes in the convection pattern, presumably induced by seismic activity, with a more recent and dramatic reorganization resulting in convective cooling. The quartz crystals are sensitive recorders of the earlier higher temperature history, unaffected by the present-day situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.