Abstract

Solid-state complementary metal oxide semiconductor (CMOS)-compatible glucose fuel cells, with single-walled carbon nanotube (SWCNT) films and different amounts of carbon nanotube (wt%) were investigated. Those with a SWCNT content of 3 wt% were found to develop the highest open circuit voltage (OCV) of 400 mV, together with a high electrical conductivity, a power density of 0.53 μW/cm2 and current density of 1.31 μA/cm2. Measurements were performed by dipping the anode into a 30 mM glucose solution. The OCV and power density increased together with the fuel cell concentration. The developed fuel cell uses materials that are biocompatible with the human body (single-walled carbon nanotube-glucose). As a result, it was possible to attain an OCV of 400 mV with a single-walled carbon nanotube content of 3 wt% while improvements in the performance of the CMOS-compatible glucose fuel cell were obtained, and the parameters affecting the performance of the fuel cell were identified. This bio-fuel cell was fabricated using CMOS semiconductor processes on a silicon wafer. These findings are significant to realizing mobile or implantable devices that can be used for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.